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The quantitative structure-retention relationship (QSRR) of the essential oil components against the gas
chromatography retention index (RI) was studied. The genetic algorithm (GA) was employed to select the
variables that resulted in the best-fitted models. After the variables were selected, the linear multivariate
regressions [e.g. the multiple linear regression (MLR), the partial least squares (PLS)] as well as the non-
linear regressions [e.g. the polynomial PLS (poly-PLS), the support vector machine (SVM)] were utilized
to construct the linear and nonlinear QSRR models. The obtained results using SVM were compared with
hemometrics
SRR
enetic algorithms
upport vector machine
ssential oils

those of MLR, PLS and poly-PLS, exhibiting that the SVM model demonstrated a better performance than
that of the other models. The relative standard error SE (%) of the training set and the test set for the SVM
model was 1.96 and 4.25, and the square correlation coefficients were 0.987 and 0.962 respectively, while
the square correlation coefficient of the cross validation (Q2) on the SVM model was 0.963, revealing the
reliability of this model. The resulting data indicated that SVM could be used as a powerful modeling tool

s is t
SVM
for the QSRR studies. Thi
retention index using the

. Introduction

Essential oils are sometimes used to flavor compounds in food
nd have antimicrobial activities. Also, they are toxic to humans
ncluding: carcinogenicity, reproductive and developmental toxi-
ity, neurotoxicity as well as acute toxicity. This applies whether
aken internally, applied to the skin or simply inhaled. As with

ost medicinal drugs, either of a “synthetic” or a “natural” origin,
he compounds present in essential oils have the potential to cre-
te serious, and even fatal toxic effects if ingested in overly large
uantities, or used incorrectly [1,2].

In addition, essential oils play a determining role as natural fla-
oring compounds in both the perfumery and the pharmaceutical
ndustries. In Japan, Citrus sudachi is a famous sour citrus fruit on
ccount of its unique pleasant citrus odor and its savory taste [3–5].
t is cultivated in Tokushima prefecture on Shikoku Island. Com-

only, Citrus sudachi is used as seasoning in foods or as flavoring

n alcoholic beverages. The essential oil components of this nat-
ral product include: alcohols, organic acids, aldehydes, ketones,
sters, aromatic compounds and terpenes—some of which have
hown antibacterial activity [6]. All these compounds have been

∗ Corresponding author. Tel.: +98 21 61112788; fax: +98 21 66405141.
E-mail address: riahisv@khayam.ut.ac.ir (S. Riahi).

304-3894/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
oi:10.1016/j.jhazmat.2008.11.097
he first research on the QSRR of the essential oil compounds against the
.

© 2008 Elsevier B.V. All rights reserved.

identified by gas chromatography-mass spectrometry (GC-MS).
Nevertheless, the mass spectra do not always present enough evi-
dence for the structure elucidation and a prediction model should
be used to verify the molecular structure. These methodologies,
called quantitative structure retention relationships (QSRR), permit
the generation of useful equations for the prediction of retention
indices for molecules that are similar but different from those
used to develop the model [7]. Seeking the quantitative relation-
ship between the molecular structure and the gas chromatographic
retention indices has been a basic task in chemistry. Correlations
between the GC retention indices and the molecular structures can
provide more profound insights into the interactions between the
eluents and the stationary phases from a theoretical viewpoint.

Recently several QSPR/QSRR studies on the retention relation-
ship of essential oil components have been reported. Kovats gas
chromatographic retention indices for both apolar (DB-1) and polar
(DB-Wax) columns for 48 compounds from Ylang-Ylang essential
oil by Olivero et al. [8], capillary column gas chromatographic reten-
tion time for natural sterols (trimethylsilyl ethers) from olive oil by
Acuña-Cueva et al. [9], Kovats retention indices of terpenes by Hem-

mateenejad et al. [10], retention indices of pyrazines by Stanton et
al. [7].

This work relates the quantitative structure investigation on the
essential oils, extracted from the Citrus sudachi fruit and their RI
relationship. In the QSAR/QSRR studies, there are some techniques

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:riahisv@khayam.ut.ac.ir
dx.doi.org/10.1016/j.jhazmat.2008.11.097
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Table 1
The data set and the corresponding observed and predicted RI values by SVM for the
training and test set.

Number Name RI (Exp) RI (SVM) E (%)a

Training set
1 Terpinolene 1086 1029 −5.25
2 cis-pinocamphone 1173 1112 −5.2
3 Limonen-8,9-oxide 1199 1166 −2.75
4 trans-dihydro carvone 1204 1199 −0.42
5 Camphene 951 949 −0.21
6 Pinene 980 978 −0.2
7 Terpinene 1017 1015 −0.2
8 p-cymene 1024 1022 −0.2
9 (E)-�-ocimene 1048 1046 −0.19

10 cis-sabinene hydrate 1068 1066 −0.19
11 trans-sabinene hydrate 1097 1095 −0.18
12 Thujone 1114 1112 −0.18
13 Terpinen-4-ol 1177 1175 −0.17
14 Terpineol 1189 1187 −0.17
15 Citronellol 1229 1227 −0.16
16 cis-carveol 1230 1228 −0.16
17 Citronellal 1153 1155 0.17
18 Dill ether 1186 1188 0.17
19 cis-dihydro carvone 1197 1199 0.17
20 2,6-dimethyl-5-heptenal 1094 1096 0.18
21 Perillene 1101 1103 0.18
22 cis-limonen-1,2-oxide 1134 1136 0.18
23 trans-p-mentha-2-en-1-ol 1141 1143 0.18
24 Limonene 1030 1032 0.19
25 1,8-cineole 1032 1034 0.19
26 6-methyl-5-hepten-2-one 990 992 0.2
27 Diisopropyl disulfide 1018 1020 0.2
28 Heptanol 968 970 0.21
29 Ethyl acetate 810 812 0.25
30 �-thujene 930 933 0.32
31 Linalool 1100 1107 0.64
32 trans-carveol 1218 1226 0.66
33 Fenchone 1087 1096 0.83
34 (Z)-�-ocimene 1042 1052 0.96
35 p-cymen-8-ol 1185 1209 2.03
36 Phellandrene 1003 1024 2.09
37 Campholenal 1126 1160 3.02
38 Myrcene 991 1046 5.55
39 cis-linalool oxide 1074 1138 5.96
40 Hexanal 800 857 7.13
41 trans-gama-Bisabolen 1533 1433 −6.52
42 Carvacrol 1296 1214 −6.33
43 Piperitone 1253 1183 −5.59
44 Humulene 1454 1425 −1.99
45 Thymol 1293 1268 −1.93
46 Geranyl acetone 1454 1428 −1.79
47 �-cadinene 1517 1490 −1.78
48 (E,E)-�-farnesene 1508 1495 −0.86
49 Perilla alcohol 1296 1285 −0.85
50 �-Cedrene 1418 1407 −0.78
51 �-Caryophyllene 1413 1407 −0.42
52 trans-Carvone oxide 1280 1278 −0.16
53 �-terpinen-7-al 1283 1281 −0.16
54 Undecanal 1308 1306 −0.15
55 cis-carvyl acetate 1362 1360 −0.15
56 �-Pathchoulene 1381 1379 −0.14
57 �-Chamigrene 1474 1472 −0.14
58 Cubebol 1512 1510 −0.13
59 Elemol 1549 1547 −0.13
60 Spathulenol 1575 1573 −0.13
61 Caryophyllene oxide 1578 1576 −0.13
62 Cedrol 1596 1594 −0.13
63 Humulene oxide 1601 1599 −0.12
64 �-muurolol 1646 1644 −0.12
65 Patchouli alcohol 1659 1657 −0.12
66 �-sinensal 1752 1750 −0.11
67 Geranial 1270 1269 −0.08
68 Citronellyl acetate 1354 1354 0
54 S. Riahi et al. / Journal of Hazar

hich can be applied for the model construction, such as the multi-
le linear regression (MLR), the partial least squares (PLS). Also, the
onlinear regressions can be applied like the polynomial PLS (poly-
LS), used for the inspection of the linear and nonlinear relation
etween the interested property and the molecular descriptors,
espectively. MLR yields models that are simpler and easier to inter-
ret than PLS, because these methods perform regression on the

atent variables that do not have any physical meaning. However,
ue to the collinearity between the structural descriptors, MLR is
ot able to extract useful information from the structural data. As a
onsequence, an overfitting problem is encountered. PLS is a factor
nalytical technique which uses factors, or latent variables to cre-
te a target matrix used for calibration. PLS is suitable if there are
ewer factors in the target matrix than the number of the factors
hich are originally present in the data matrix. In PLS, the com-

ination step and the regression stage are amalgamated with the
ecomposition step and the production of the latent variables, so
hat the eigenvectors of the data matrix are extracted in a sequence
ongruent with the eigenvectors of the target matrix [11]. Normal
r linear PLS uses a linear function to regress the scores of the
escriptors matrix on the scores of the retention indexes matrix
o find the inner relation. The polynomial PLS employs a nonlin-
ar function, in this case using a squared function to find this inner
elation. A good explanation of PLS and nonlinear PLS is given in the
aper by Wold et al. [12]. This paper describes the PLS process with
he similarities and differences between the linear and nonlinear

ethods.
The support vector machine (SVM) is a new algorithm developed

y the machine learning community [13,14]. The SVM approach
utomatically controls the flexibility of the resulting classifier
n the training data. Accordingly, by the design of the algo-
ithm, the deteriorating effect of the input dimensionality on the
eneralization ability is largely suppressed. Due to its remark-
ble generalization performance, SVM has attracted attention and
ained extensive application, such as; pattern recognition problems
15,16], drug design [17], QSAR [18–21] and quantitative QSPR anal-
sis [22,23]. In most of these cases, the performance of the SVM
odeling either matches or is significantly better than that of the

raditional machine learning approaches.
The main aim of the present work was to establish a new QSRR

odel for predicting the retention index property of the organic
ompounds, derived from the essential oil of Citrus sudachi using
he SVM techniques. The performance of this model was compared
ith those obtained by the MLR, PLS and poly-PLS methods. This is

he first research on QSRR of the essential oil compounds against
he retention index, using SVM.

. Materials and methods

.1. Data set

The data set used in this study was taken from the work of Mook-
asanit et al. [24] and is presented in Table 1. This set contains the
etention index property of Citrus sudachi essential oil compounds,
hich were measured at the same conditions with the HP5 column

30 m×0.32 mm i.d.; Hewlett Packard, CA). The retention index of
he compounds fell in the range of 800 for Hexanal and 1752 for
-Sinensal, at the mean value of 1249.

.2. Equipment
A Pentium IV personal computer (CPU at 3.06 GHz) with a Win-
ows XP operating system was used. The geometry optimization
as performed with HyperChem (Version 7.0 Hypercube, Inc). The
ragon 2.1 software was utilized [25] to calculate the molecu-

ar descriptors. The SPSS software (version 11.50, SPSS, Inc.) was

69 �-eudesmol 1649 1649 0
70 trans-gama-cayophyl 1403 1405 0.14
71 �-elemene 1433 1435 0.14
72 (E)-�-farnesene 1457 1459 0.14
73 Drima-7,9(11)-diene 1469 1471 0.14
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Table 1 (Continued )

Number Name RI (Exp) RI (SVM) E (%)a

74 Neryl acetate 1366 1368 0.15
75 �-ylangene 1372 1374 0.15
76 Cumin aldehyde 1238 1240 0.16
77 Perillaaldehyde 1272 1274 0.16
78 �-copaene 1370 1379 0.66
79 Epicubebol 1491 1510 1.27
80 �-elemene 1387 1435 3.46

Test set
1 �-sesquiphellandrene 1520 1384 −8.95
2 (E)-Nerolidol 1564 1491 −4.67
3 Dodecanal 1407 1343 −4.55
4 Terpinene 1060 1022 −3.58
5 p-mentha-1-en-9-ol 1289 1244 −3.49
6 �-cedr-8(15)-en-9-ol 1643 1604 −2.37
7 �-elemene 1337 1319 −1.35
8 Sabinene 974 965 −0.92
9 Carvone 1241 1240 −0.08

10 Germacrene D 1479 1478 −0.07
11 trans-limonen-1,2-oxide 1136 1136 0
12 Myrtenal 1191 1191 0
13 Phellandrene 1030 1043 1.26
14 cis-p-mentha-2-en-1-ol 1121 1138 1.52
15 Decanal 1206 1238 2.65
16 Pinene 934 961 2.89
17 trans-linalool oxide 1088 1138 4.6
18 Nonanal 1105 1172 6.06
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19 Octanal 1004 1078 7.37
0 (E)-2-hexenal 852 922 8.22

a Relative error.

mployed for the simple MLR analysis. The PLS and GAs evalua-
ions were carried out using the PLS-Toolbox Version 2.0 for use
ith Matlab from the Eigenvector Research Inc. The SVM toolbox
as developed by Gunn [26,27].

.3. Descriptors calculation and selection

The first step to obtain a QSRR model was to encode the struc-
ural features of the molecules, which were named molecular
escriptors. The molecular descriptors, used to search the best
odel for the retention indexes of these compounds, were cal-

ulated with the Dragon program on the basis of the minimum
nergy molecular geometries. These geometries were optimized
ith the aid of the HyperChem package, based on the AM1 semiem-
irical method. The calculated descriptors were first analyzed for
he existence of constant or near-constant variables. The detected
nes were then removed. In addition, to decrease the redundancy
xisting in the descriptor data matrix, the descriptors correlation
ith each other and with the retention index of the molecules was

xamined. Afterwards, the collinear descriptors (i.e. r > 0.9) were
etected. Among the collinear descriptors, the one presenting the
ighest correlation with the RI property was retained. The other
escriptors were removed from the data matrix. Then, the remain-

ng descriptors were collected in an n × m data matrix (D), where
= 100 and m = 325 are the numbers of the compounds and the
escriptors, respectively.

MLR and PLS were utilized as linear techniques, whereas
oly-PLS and SVM were employed as nonlinear feature mapping
echniques for the construction of the QSRR models in this work.
ince the PLS, poly-PLS and SVM methods cannot select the most
ignificant descriptors from the pool of the calculated molecu-
ar descriptors, it would be necessary to use a variable selection
ethod. In the present work, the genetic algorithm (GA) vari-
ble subset selection method [28,29] was used for the selection of
he most relevant descriptors from the pool of the remaining 325
escriptors. These descriptors would be used as inputs of the MLR,
LS, poly-PLS and SVM.
aterials 166 (2009) 853–859 855

2.4. Genetic algorithm

Nowadays, GA is wellknown as an interesting and most widely
used variable selection method. GA is a stochastic method to solve
the optimization problems defined by fitness criteria, applying the
evolution hypothesis of Darwin and different genetic functions, i.e.
crossover and mutation.

To select the most relevant descriptors, the evolution of the
population was simulated [30–32]. The population of the first gen-
eration was selected randomly. Each individual member in the
population, defined by a chromosome of binary values, represented
a subset of descriptors. The number of the genes at each chro-
mosome was equal to the number of the descriptors. A gene was
given the value of 1, if its corresponding descriptor was included
in the subset; otherwise, it was given the value of zero. The num-
ber of the genes with the value of 1 was kept relatively low to have
a small subset of descriptors [33]. As a result, the probability of
generating 0 for a gene was set greater (at least 60 %) than the
value of 1. The operators used here were crossover and mutation.
The application probability of these operators was varied linearly
with a generation renewal (0–0.1 % for mutation and 60–90 % for
crossover). The population size was varied between 50 and 250
for different GA runs. For a typical run, the evolution of the gen-
eration was stopped when 90 % of the generations took the same
fitness.

2.5. Support vector machine (SVM)

SVM, developed by Vapnik and Cortes [34] as a novel type of
machine learning method, is gaining popularity due to its many
attractive features, and promising empirical performance. SVM
demonstrates a great advantage. It can adopt the structure risk
minimization (SRM) principle, being superior to the traditional
empirical risk minimization (ERM) principle. The conventional neu-
ral networks utilize the ERM principle. On the one hand, SRM
minimizes an upper bound of the generalization error on the
Vapnik–Chernoverkis (VC) dimension. On the other hand, ERM
minimizes the training error. With reference to the regression
approximation, we supposed that there is a given set of data points
G = {(xi, di)}n

i (xi is the input vector, di is the desired value and n is
the total number of the data patterns), drawn independently and
identically from an unknown function. With three distinct charac-
teristics, SVMs can approximate the function. Firstly, the regression
is assessed in a set of linear functions. Secondly, the regression
assay is defined as the risk minimization problem, regarding the
ε-insensitive loss function. Thirdly, the risk based on the SRM prin-
ciple is minimized, where the structure elements are defined by the
inequality constant of (1/2)||ω||2 ≤. With the form of the function
(1) below, the linear function is formulated at the high dimensional
feature space.

y = f (x) = w�(x) + b (1)

In this function, �(x) is the high dimensional feature space, being
nonlinearly mapped from the input space x. The first and second
above-mentioned characteristics are reflected in the minimization
of the regularized risk function (2) of SVMs. With the help of func-
tion (2), the estimation of the w and b coefficients is performed.
The use of this risk function involves two targets; (i) to find a func-
tion, displaying the highest ε deviation from the actual values in
all the training data points and (ii) to find a function, which is

simultaneously as flat as possible.

RSVMs(C) = C
1
n

n∑
i=1

Lε(di, yi) + 1
2

||ω||2 (2)
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Table 2
The statistical parameters of different constructed QSRR models.

Training set Test set Cross-validation

R2 RMSE F R2 RMSE F Q2
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Table 3
Details of the constructed GA–MLR model.

Descriptor description Symbols Coefficient MFa

Constant −650.89 (±90.09) –
Number of 10-membered rings nR10 106.23 (±19.63) 19.92
Mean information content

vertex degree magnitude
IVDM 490.93 (±30.14) 1828.54

Radial Distribution Function -
2.0/weighted by atomic
Sanderson
electronegativities

RDF020e 35.97 (±5.47) 133.24

H autocorrelation of lag
8/weighted by atomic masses

H8m −7025.61 (±726.74) −22.66

Unsaturation index Ui −72.32 (±14.80) −98.3
Fragment-based polar surface PSA 3.89 (±0.59) 49.18
LR 0.949 48.26 226.53 0.931 60.42 21.14 0.936
LS 0.944 50.28 207.73 0.913 66.95 16.96 0.922
oly-PLS 0.953 45.99 248.33 0.932 56.92 26.96 0.941
VM 0.987 24.70 872.08 0.962 51.43 27.52 0.963

ε(d, y) =
{∣∣d − y

∣∣ − ε,
∣∣d − y

∣∣ ≥ ε,

0 otherwise

}
(3)

As far as the first term, C(1/n)
∑n

i=1Lε(di, yi), of function (2) is
oncerned, it is called empirical error (risk) and it is calculated by
he ε-insensitive loss function (3). The function (3) is capable of
sing the sparse data points to represent the designed function
1). Additionally, the second term of the function (2), (1/2)‖ω‖2, is
amed regularized term. Finally, ε is called the SVMs tube size and
is the regularization constant, determining the trade-off between

he empirical error and the regularized term. The introduction of
he � and �* positive slack variables results in equation (4), to the
ollowing constrained function:

inimize RSVMs(ω, �∗) = 1
2

||ω||2 + C

n∑
i=1

(�i + �∗
i ) (4)

In equation (4), i stands for the data sequence, with i = 1 being
he most recent observation and i = 1 being the earliest observation.
ecision function (5) takes the form below, after introducing the
agrange multipliers and exploiting the optimality constraints:

(x, a∗
i ) =

n∑
i=1

(ai − a∗
i )K(x, xi) + b (5)

In equation (5), ai and a∗
i

are the introduced Lagrange multipliers.
ith the utilization of the Karush–Kuhn–Tucker (KKT) conditions,

nly a limited number of coefficients will not be zero among ai and
∗
i
. The related data points could be referred to the support vectors.

or equation (5), K refers to the kernel function, including the linear,
olynomial, splines and radial basis function.

With respect to the support vector regression, the function
hich is broadly employed is the Gaussian radial basis function

6):
Radial Basis Function (RBF):

(xi, xj) = exp
(

−�
∥∥xi − xj

∥∥2
)

(6)

. Results and discussion

For the selection of the most important descriptors, GA was run
any times with different initial sets of population. At the end,
population of good models was obtained. Among these models,
ne model presented the highest statistical quality and it was used
epeatedly in comparison with the other models.

The descriptors, selected by this method, were used to construct
ome linear and nonlinear models with the employment of the MLR,
LS, poly-PLS and SVM techniques.

.1. MLR analysis
The statistical parameters of the GA–MLR model, constructed by
he selected descriptors, are depicted in Table 2. The methods for
he calculations of these descriptors and their meaning have been
xplained in the Handbook of Molecular Descriptors by Todeschini
t al. [35].
area

N = 80, R2 = 0.949, RMSE = 48.26, F = 226.53.
a MF refer to the mean effect value.

The six descriptors, which were selected by GA, are; the number
of the 10-membered rings (nR10), the mean information content
vertex degree magnitude (IVDM), the Radial Distribution Function
- 2.0/weighted by atomic Sanderson electronegativities (RDF020e),
the H autocorrelation of lag 8/weighted by atomic masses (H8m),
the Unsaturation index (Ui) and the Fragment-based polar surface
area (PSA).

The obtained correlation matrix between these descriptors
showed the capability of the QSRR regression models to predict
the retention index accurately, which is not associated with the
collinearity between the variables.

To examine the relative importance as well as the contribution
of each descriptor in the model, the value of the mean effect (MF)
was calculated for each descriptor. This calculation was performed
with the equation below, displayed in the last column of Table 3.

MFj = ˇj

∑i=n
i=1dij∑m

j ˇj

∑n
i dij

(7)

MFj represents the mean effect for the considered descriptor j,
ˇj is the coefficient of the descriptor j, dij stands for the value of
the target descriptors for each molecule and, eventually, m is the
descriptor number in the model. The MF value indicates the relative
importance of a descriptor, compared with the other descriptors in
the model. Its sign exhibits the variation direction in the values
of the activities as a result of the increase (or reduction) of these
descriptor values.

One of the constitutional descriptors, appearing in the model,
is nR10. As it can be apparent from Table 3, the nR10 mean effect
has a positive sign. This sign suggests that the retention index is
directly related to this descriptor. Subsequently, the increase of the
10-membered ring number of the molecules results in its retention
index increasing.

IVDM is the second descriptor, appearing in the model. It is one
of the topological descriptors (2D). This index was proposed as a
measure of the molecular complexity together with some other
information indices derived from the distance matrix. It is clear
from Table 2 that this descriptor has a positive sign, illustrating
a greater mean effect value than that of the other descriptors.
Therefore, this descriptor had a significant effect on the retention
mechanism of the essential oil molecules.

The third descriptor is RDF020e, which is one of the radial dis-
tribution function (RDF) descriptors. RDF in this form meets all the

requirements for the 3D structure descriptors. It is independent of
the atom number (i.e. the size of a molecule), it is unique regarding
the three-dimensional arrangement of the atoms and it is invariant
against the translation and rotation of the entire molecule. Addi-
tionally, the RDF descriptors can be restricted to specific atom types
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validated coefficient Q2 value was 0.963. It provided an RMSE value
of 24.7 binding affinity units for the training set, 51.4 for the test
set, whereas the corresponding correlation coefficients (R2) were
0.987 and 0.962, respectively (Table 2).
S. Riahi et al. / Journal of Hazar

r distance ranges to represent specific information in a certain
hree-dimensional structure space (e.g. to describe the steric hin-
rance or the structure/activity properties of a molecule). RDF020e
isplays a positive sign, which indicates that the retention index is
irectly related to this descriptor.

The fourth descriptor is H8m, which was weighted by atomic
ass. The H8m mean effect has a negative sign (Table 3), which

eveals that the retention index is inversely related to this descrip-
or. Hence, it was concluded that by increasing the molecular mass
he value of this descriptor increased, causing a reduction in its
etention index.

The fifth descriptor is Ui, which was the unsaturation index
elated to the unsaturated bonds. In line with Table 3, the Ui mean
ffect displays a negative sign, showing that the retention index is
nversely related to this descriptor. Accordingly, it was concluded
hat by increasing the unsaturated bonds in the molecules the value
f this descriptor increased, leading to a decrease in its retention
ndex.

The final descriptor is PSA, which was the polar surface area
includes all the O, N, S atoms and the covalently bonded Hs). The
SA mean effect demonstrates a positive sign, revealing that the
etention index is directly related to this descriptor. Thus, when
he polar surface area of the molecules is increased, the retention
ndex also increases. For this model (MLR), the values of R2 and
MSE for the training and test set are 0.949 and 48.26, as well as
.931 and 60.42, respectively. The Q2 value of the leave-one-out
ross-validation is 0.936.

.2. PLS and poly-PLS analysis

The resulting MLR equations could describe the structure reten-
ion relationships well. However, due to the collinearity problem
n the MLR analysis, the collinear descriptors were removed
efore the MLR model development. Therefore, some information
as discarded in the MLR analysis. On the contrary, the factor

nalysis-based methods (e.g. the PLS regression) could handle the
ollinear descriptors, and consequently better predictive models
ere attained by PLS. Hence, to model the structure-retention index

elationships in a better way, PLS and poly-PLS were also employed
s a linear and nonlinear methods in this study [36,37]. In the case
f PLS and poly-PLS, before the statistical analysis, the descriptors
ere scaled to zero mean and unit variance (auto-scaling proce-
ure). The number of the significant factors for the PLS and poly-PLS
lgorithms were determined using the cross-validation method
38,39]. The best PLS and poly-PLS models contained six selected
escriptors in a three latent variable space. In general, the number
f components (latent variables) was smaller than the number of
ndependent variables in the PLS analysis. The statistical param-
ters obtained by these models for the training and test sets are
ummarized in Table 2. It can be observed that the modeling with
oly-PLS is slightly better than that with MLR and PLS.

.3. SVM analysis

After the establishment of the MLR, PLS and poly-PLS model,
VM was used to develop a model by the training set compounds,
ased on the same subset of descriptors. The LOO (Leave One Out)
ross-validation method implied in SVM was used to build a model.
he SVM performance for regression depends on the combination of
everal factors, such as the kernel function type, the capacity param-
ter C, ε of the ε-insensitive loss function and its corresponding

arameters.

Initially, the selection of the kernel function should take place
s it determines the sample distribution in the mapping space.
BF is broadly used in many studies, owing to its good general
erformance and the small number of parameters to be adjusted
Fig. 1. The gamma(�) vs. RMSE for the training set (ε = 2; C = 5400).

[40]. In this study, RBF was employed with R having the form of:
exp(−� × |u − v|2), � is a kernel parameter, while u and v are two
independent variables.

Moreover, the corresponding parameters (e.g. � of the kernel
function) strongly influence the number of the support vectors, hav-
ing a close relation with the SVM performance and the training time.
The extremely high number of support vectors could lead to over-
fitting and increase the training time. With respect to � , it controls
the amplitude of the RBF function and accordingly, it controls the
SVM generalization ability. Fig. 1 depicts the plot of � versus RMSE
on the LOO cross-validation. It is clear that the optimal � value was
0.037.

Regarding the ε-insensitive parameter, it can prevent the entire
training set meeting boundary conditions. In this way, the sparsity
possibility in the dual formulation solution is provided. The opti-
mum ε value is significantly affected by the noise type present in
the data, which is usually unknown. Fig. 2 illustrates the RMS error
of the LOO cross-validation on different epsilon. In agreement with
this figure, the most favorable value was equal to 2.

Finally, the influence of the capacity parameter C was investi-
gated. The capacity parameter C controls the trade-off between the
margin maximization and the training error minimization. When
the C value is too low, then insufficient stress will be placed on
fitting the training data. When the C value is too high, then the
algorithm will over-fit the training data. Nevertheless, according to
Ref. [41], the prediction error was not frequently affected by the C
parameter. The learning process can be stabilized, if initially a high
C value is selected. Fig. 3 presents the plot of RMSE versus the C
value with the values of � = 0.037 and � = 2. The optimum C value
was equivalent to 5400.

As a consequence, the best choices regarding the � , ε and C
values were 0.037, 2 and 5400. For the optimal model, the cross-
Fig. 2. The epsilon vs. RMSE for the training set (Gamma(�) = 0.037; C = 5400).
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Fig. 3. The capacity parameter C vs. RMSE for the training set (Gamma(�) = 0.037;
ε = 2).
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Fig. 4. Predicted vs. experimental retention index (RI) (SVM).

The calculated retention index, obtained from the SVM predic-
ive model, is listed in Table 1. Fig. 4 exhibits the predicted versus
he experimental values of the retention index for the training and
est sets with the SVM method. Table 2 shows the statistical parame-
ers of the results, attained by four model studies for the same set of
ssential oil compounds. The RMSE values of the SVM model for the
raining and test data set were much lower than those of the models
roposed in the other methods. The square correlation coefficient
R2), given by the SVM model, was higher than that of the MLR, PLS
nd poly-PLS methods. Furthermore, the results of the F-test were
btained (Table 2). From this table, it can be noticed that the SVM
odel gives the highest F values, so this model provides the most

atisfactory results, compared with the results obtained from the
LR, PLS and poly-PLS methods. Consequently, this SVM approach

urrently constitutes the most accurate method for predicting the
etention index of the Citrus sudachi essential oil components.

. Conclusion

In the present study, two linear methods (MLR and PLS) and two
onlinear methods (poly-PLS and SVM) were used to construct a
uantitative relation between the retention index of some essential
il components and their calculated descriptors.

The results obtained by SVM were compared with the results
btained by MLR, PLS and poly-PLS. The results demonstrated that
VM was more powerful in the retention index prediction of the
ssential oil compounds than MLR, PLS and poly-PLS. A suitable

odel with high statistical quality and low prediction errors was

ventually derived. This model could accurately predict the reten-
ion index of these components that did not exist in the modeling
rocedure. It was easy to notice that there was a good prospect for
he SVM application in the QSRR modeling.
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